Prepared in accordance with ASME Y14.24 Vendor item drawing																					
REV																					
PAGE																					
REV																					
PAGE																					
REV STATUS			REV	1																	
OF PAGE	S		PAG	θE		1	2	3	4	5	6	7	8	9	10	11					
PMIC N/A	N			PRE	PARE	ED BY F		Nguye	en			DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990									
	Original date of drawing YY MM DD		ng	CHE	CKEI		Phu H.	Nguye	en				TITLE MICROCIRCUIT, DIGITAL, PLL FREQUENCY								
11-01-19		APP	ROVE	ED BY		s M. He	ess									HIC					
			ZE A	COL	DE IDE	ent. n 162	o. 236			DWO	g no.		١	/62	/11	60	6				
				REV	1	1						PAG	BE 1	OF	11						

	REVISIONS							
Ī	LTR	DESCRIPTION	DATE	APPROVED				
ſ								
ľ								
Ī								

1. SCOPE

1.1 Scope. This drawing documents the general requirements of a high performance PLL frequency synthesizer microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 Vendor Item Drawing Administrative Control Number. The manufacturer,s PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

	V62/11606 Drawing number	Devi	01 ce type ± 1.2.1)	X Case outline (See 1.2.2)	Lead finish (See 1.2.3)
1.2.1 <u>Dev</u>	<u>ice type(s)</u> .				
Dev	vice type	Generic			Circuit function
	01	ADF4106-	ΕP	F	PLL frequency synthesizer
1.2.2 <u>Cas</u>	<u>e outline(s)</u> . The c	ase outlines are as spe	cified herein.		
	Outline letter	Number of pins	JEDEC PUB 9	<u>95</u>	Package style
	X Y	16 20	JEDEC MO-19 JEDEC MO-22		Lead Thin Shrink Small Outline Package Lead Lead Frame Chip Scale Package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium
Z	Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/11606
COLUMBUS, OHIO	A	16236	
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Voltage referenced :	
AV _{DD} to GND <u>2</u> /	-0.3 V to +7.0 V
AV_{DD} to DV_{DD}	-0.3 V to +0.3 V
V_P to GND	
V_P to AV_{DD}	
Digital I/O voltage to GND	-0.3 V to V _{DD} + 0.3 V
Analog I/O voltage to GND	
REF _{IN} , RF _{IN} A, REF _{IN} B to GND	
Ambient operating temperature range	-55°C to +125°C
Storage temperature range	
Maximum junction temperature (T _J)	
Thermal impedance, (θ_{JA}) :	
Case outline X	112°C /W
Case outline Y (Paddle soldered)	
Reflow soldering:	
Peak temperature	260°C
Time at peak temperature	40 sec
Transistor count:	
CMOS	6425
Bipolar	303

2. APPLICABLE DOCUMENTS

JEDEC PUB 95 – Registered and Standard Outlines for Semiconductor Devices

(Applications for copies should be addressed to the Electronic Industries Alliance, 3103 North 10th St., Suite 240-S, Arlington, VA 22201-2107or online at http://www.jedec.org)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/11606
COLUMBUS, OHIO	A	16236	
		REV	PAGE 3

 $[\]underline{2}$ / GND = AGND = DGND = 0 V.

- 3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.
- 3.5 Diagrams.
- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Functional block diagram</u>. The functional block diagram shall be as shown in figure 3.
- 3.5.4 <u>Timing diagrams</u>. The timing diagrams shall be as shown in figure 4.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/11606
COLUMBUS, OHIO	A	16236	
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

RF _{IN}	2/ unless otherwise specified For lower frequency, ensure slew rate (SR) > 320/µs P = 8 P = 10 For f < 20 MHz, ensure SR > 50 V/µs Biased at AV _{DD} /2 ⁴ ABP = 0, 0 (2.9 ns antibacklash pulse width)	Min 0.5 -10 20 0.8	Max 6.0 0 300 325 300 V _{DD} 10 ±100	GHz dBm MHz MHz Vp-p pF µA
	For lower frequency, ensure slew rate (SR) > $320/\mu$ s P = 8 P = 10 For f < 20 MHz, ensure SR > 50 V/ μ s Biased at AV _{DD} /2 ⁴	-10	0 300 325 300 V _{DD} 10 ±100	dBm MHz MHz MHz Vp-p pF
	P = 8 P = 10 For f < 20 MHz, ensure SR > 50 V/ μ s Biased at AV _{DD} /2 ⁴	-10	0 300 325 300 V _{DD} 10 ±100	dBm MHz MHz MHz Vp-p pF
	P = 8 P = 10 For f < 20 MHz, ensure SR > 50 V/ μ s Biased at AV _{DD} /2 ⁴	-10	0 300 325 300 V _{DD} 10 ±100	dBm MH2 MH2 MH2 Vp-p pF
I _{CP}	P = 10 For f < 20 MHz, ensure SR > 50 V/ μ s Biased at AV _{DD} /2 ⁴	20	300 325 300 V _{DD} 10 ±100	MH2 MH2 MH2 Vp-p
I _{CP}	P = 10 For f < 20 MHz, ensure SR > 50 V/ μ s Biased at AV _{DD} /2 ⁴	_	325 300 V _{DD} 10 ±100	MH: MH: Vp-j pF
I _{CP}	For f < 20 MHz, ensure SR > 50 V/µs Biased at AV _{DD} /2 ⁴	_	300 V _{DD} 10 ±100	MH Vp- pF
I _{CP}	Biased at AV _{DD} /2 ⁴	_	V _{DD} 10 ±100	Vp- pF
I _{CP}	Biased at AV _{DD} /2 ⁴	_	V _{DD} 10 ±100	Vp- pF
I _{CP}		0.8	10 ±100	pF
I _{CP}	ABP = 0, 0 (2.9 ns antibacklash pulse width)		±100	pF
I _{CP}	ABP = 0, 0 (2.9 ns antibacklash pulse width)			1
I _{CP}	ABP = 0, 0 (2.9 ns antibacklash pulse width)			
I _{CP}	ABP = 0, 0 (2.9 ns antibacklash pulse width)			
I _{CP}			104	MH
I _{CP}				
-01				
	With $B_{SET} = 5.1 \text{ kO}$	5 TY	Έ	m/
				μA
	With $B_{\text{SET}} = 5.1 \text{ kO}$			<u>%</u>
				kΩ
lon	1 pA typical : $T_{1} = 25^{\circ}\text{C}$	0.0		nA
ICP		2 TV		%
				%
				%
		211	1	/0
V		14		V
		1.4	0.6	v
				μA pF
CIN			10	рг
1/	Onen drein autrut abagen 1 kO null un register te			V
VOH				v
		V _{DD} – 0.4	400	
				μA
V _{OL}	I _{OL} = 500 μA		0.4	V
			3.3	V
				V
		AV _{DD}		V
				mA
				-
		_ _		4
	$T_A = 25^{\circ}C$			
	I _{CP} I _{CP} V _{IH} V _{IL} INH, I <u>INL</u> C _{IN} V _{OH} I _{OH} V _{OL}	$\label{eq:result} \begin{array}{ c c c c } \hline With \ R_{SET} = 5.1 \ k\Omega \\ \hline \\ $	$\begin{tabular}{ c c c c c } \hline With R_{SET} = $5.1 $k\Omega$ & $625 T \\ \hline & $625 T \\ \hline With R_{SET} = $5.1 $k\Omega$ & $2.5 T \\ \hline & 0.5 V_{CP} \le V_P - $0.5 V & $2.5 T \\ \hline & 0.5 V_{CP} V_P - $0.5 V & $2.5 T \\ \hline & 0.5 V_{CP} V_P - $0.5 V & $1.5 T \\ \hline & V_{CP} = V_P/2$ & $2.7 Y \\ \hline & V_{IH} & 1.4 \\ \hline & V_{IL} & 1.4 \\ \hline & V_{OL} & $0pen-drain output chosen, $1 $k\Omega$ pull up resistor to $$1.4$ \\ \hline & V_{OL} & $0pen-drain output chosen, $1 $k\Omega$ pull up resistor to $$1.4$ \\ \hline & V_{OL} & 1.4 \\ \hline & V_{OL} & I_{OL} = $500 μA & V_{DD} \\ \hline & V_{OL} & I_{OL} = $500 μA & V_{DD} \\ \hline & AV_{DD} & AV_{DD} \\ \hline & $9.0 $mA TYP & $9.5 $mA TYP \\ \hline & $10.5 $mA TYP & $10.5 $mA TYP \\ \hline \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline With $R_{SET} = 5.1 $k\Omega$ & $5 TYP & $625 TYP & 3.0 & 11 & $2.5 TYP & 3.0 & 11 & $2.5 TYP & 3.0 & 11 & 1.2 & $2.5 TYP & 3.0 & 11 & 2 & 1.5 TYP & 2 & 2 & TYP & $0.5 $\leq $V_{CP} $\leq $V_{P} $- $0.5 V & 2 & 1.5 TYP & $V_{CP} $= $V_{P}/2$ & 2 & TYP & 1.5 & TYP & $V_{CP} $= $V_{P}/2$ & 2 & TYP & $V_{CP} $= $V_{P}/2$ & 2 & TYP & V_{IH} & 1.4 & 0.6 & 1 & 1.4 & 0.6 & 1 & 1.4 & 1 & $1$$

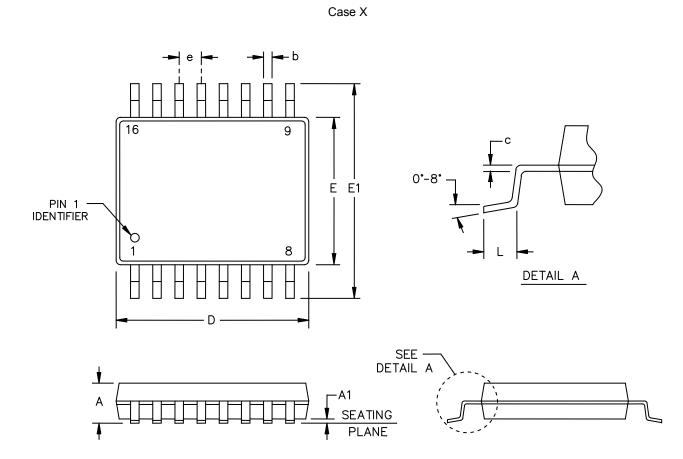
See footnotes at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/11606
COLUMBUS, OHIO	A	16236	
		REV	PAGE 5

Test	Symbol	Test conditions	Limits		Unit
		<u>2</u> /	Min	Max	
		unless otherwise specified			
Noise characteristics					
Normalized phase noise floor (PN _{SYNTH}) <u>11</u> /		PLL loop BW = 500 kHz	-223	TYP	dBc/Hz
Normalized 1/f Noise (PN_{1_f}) <u>12</u> /		Measured at 10 kHz offset, normalized to 1 GHz VCO output	-122	TYP	
Phase noise performance <u>13</u> /					dBc
900 MHz <u>14</u> /		1 kHz offset and 200 kHz PFD frequency	-92.5	TYP	
5800 MHz <u>15</u> /		1 kHz offset and 200 kHz PFD frequency	-76.5	TYP	
5800 MHz <u>16</u> /		1 kHz offset and 1 MHz PFD frequency	-83.5	TYP	
Spurious signals					dBc
900 MHz <u>14</u> /		200 kHz/400 kHz and 200 kHz PDF frequency	-90	-92	
5800 MHz <u>15</u> /		200 kHz/400 kHz and 200 kHz PDF frequency	-65	-70	
5800 MHz <u>16</u> /		1 MHz/2 MHz and 1 MHz PDF frequency	-70	-75	
Timing characteristics <u>17/</u>					-
Data to clock setup time	t ₁		10		ns
Data to clock hold time	t ₂		10		
Clock high duration	t ₃		25		
Clock low duration	t4		25		
Clock to LE setup time	t ₅		10		
LE pulse width	t ₆		20		

TABLE I. Electrical performance characteristics - Continued.

Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the 1/ specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

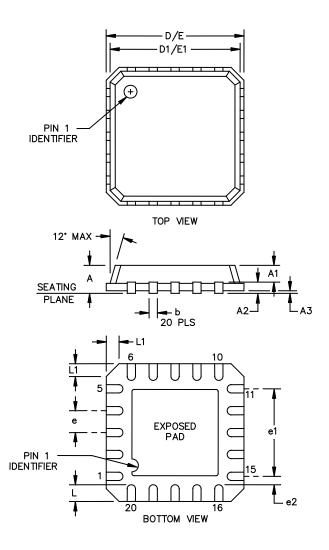

<u>2</u>/ $AV_{DD} = DV_{DD} = 3 V \pm 10\%$, $AV_{DD} \le V_P \le 5.5 V$, AGND = DGND = CPGND = 0 V, R_{SET} = 5.1 k Ω , dBm referred to 50 Ω , $-55^{\circ}C \le T_A \le +125^{\circ}C$, unless otherwise noted.

This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensutr that the RF <u>3</u>/ input is divided down to a frequency that is less than this value.

 $AV_{DD} = DV_{DD} = 3.0 V.$

- AC coupling ensures AV_{DD}/2 bias.
- <u>4/</u> <u>5/</u> <u>6/</u> <u>7/</u> Guaranteed by design. Sample tested to ensure compliance.
- $T_A = 25^{\circ}C; AV_{DD} = DV_{DD} = 3 V; P = 16; RF_{IN} = 900 MHz.$
- <u>8/</u> $T_A = 25^{\circ}C; AV_{DD} = DV_{DD} = 3 V; P = 16; RF_{IN} = 2.0 GHz.$
- <u>9</u>/ $T_A = 25^{\circ}C; AV_{DD} = DV_{DD} = 3 V; P = 32; RF_{IN} = 6.0 GHz.$
- 10/ $T_A = 25^{\circ}C; AV_{DD} = DV_{DD} = 3.3 V; R = 16383; A = 63; B = 891; P = 32; RF_{IN} = 6.0 GHz.$
- The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 11/log N (where N is the N divider value) and 10 log F_{PFD} . $PN_{SYTH} = PN_{TOT} - 10 \log F_{PFD} - 20 \log N$.
- The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f 12/ noise contribution at an RF frequency, f_{RF} , and at a frequency offset, f, is given by PN = P_{1 f} + 10log(10 kHz/f) + 20log(fRF/1 GHz). Both the normalized phase noise floor and ficker noise are modeled in ADIsimPLL.
- The phase noise is measured with the EVAL-ADF4106-EB1 evaluation board and the Agilent E4440A spectrum analyzer. The 13/ spectrum analyzer provides the REF_{IN} for the synthesizer (f_{REFOUT} = 10 MHz @ 0 dBm).
- f_{REFIN} = 10 MHz, f_{PFD} = 200 kHz; offset frequency = 1 kHz, f_{RF} = 900 MHz; N = 4500; loop B/W = 20 kHz. 14/
- f_{REFIN} = 10 MHz, f_{PFD} = 200 kHz; offset frequency = 1 kHz, f_{RF} = 5800 MHz; N = 29,000; loop B/W = 20 kHz. 15/
- f_{REFIN} = 10 MHz, f_{PFD} = 1 MHz; offset frequency = 1 kHz, f_{RF} = 5800 MHz; N = 5800; loop B/W = 100 kHz. <u>16</u>/
- $AV_{DD} = DV_{DD} = 3 V \pm 10\%$, $AV_{DD} \le V_P \le 5.5 V$, AGND = DGND = CPGND = 0 V, R_{SET} = 5.1 k Ω , dBm referred to 50 Ω , 17/ $-40^{\circ}C \le T_A \le +85^{\circ}C$, unless otherwise noted.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/11606
		REV	PAGE 6



Dimensions						
Symbol	Millimeters		Symbol	Millimeters		
	Min	Max		Min	Max	
Α		1.20	E	4.30	4.50	
A1	0.05	0.15	E1	6.40 TYP		
b	0.19	0.30	е	0.65	BSC	
С	0.09	0.20	L	0.45	0.75	
D	4.90	5.10				

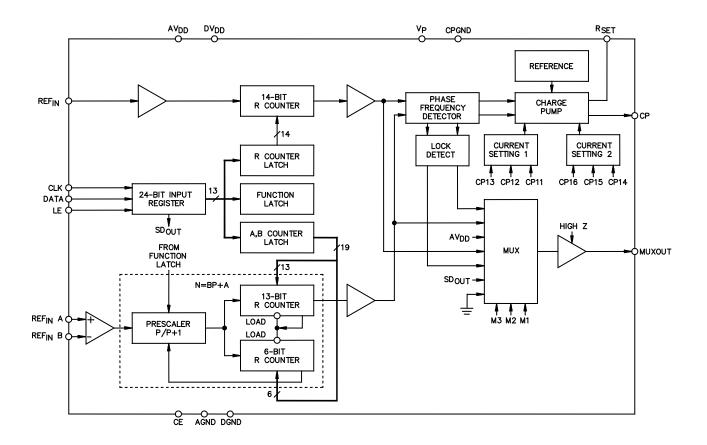
FIGURE 1. Case outline.

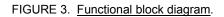
DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/11606
COLUMBUS, OHIO	A	16236	
		REV	PAGE 7

Dimensions						
Symbol	Millim	eters	Symbol	Millim	neters	
	Min	Max		Min	Max	
А	0.80	1.00	D1/E1	3.75	BSC	
A1		0.80	е	0.50 BSC		
A2	0.20	REF	e1	1.95	2.25	
A3		0.05	e2	0.25		
b	0.18	0.30	L	0.50	0.75	
D/E	4.00	BSC	L1		0.60	

FIGURE 1. <u>Case outline</u> - Continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/11606	
		REV	PAGE 8	


Case X				Cas	еY		
Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	R _{SET}	9	DGND	1	CPGND	11	CE
2	CP	10	CE	2	AGND	12	CLK
3	CPGND	11	CLK	3	AGND	13	DATA
4	AGND	12	DATA	4	RF _{IN} B	14	LE
5	RF _{IN} B	13	LE	5	RF _{IN} A	15	MUXOUT
6	RF _{IN} A	14	MUXOUT	6	AV _{DD}	16	
7	AV_{DD}	15		7	AV _{DD}	17	
8	REF _{IN}	16	VP	8	REFIN	18	VP
				9	DGND	19	R _{SET}
				10	DGND	20	CP


FIGURE 2. Terminal connections.

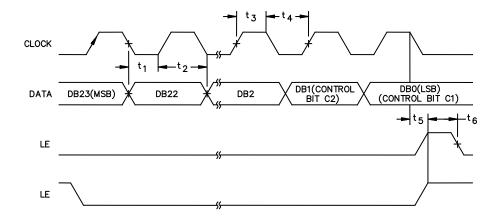

Case X			Description
PinNo.	Pin No.	Pin Name	Description
1	19	R _{SET}	Connecting a resistor between this pin and CPGND sets the maximum charge pump output current. The nominal voltage potential at the R_{SET} pin is 0.66 V. The relationship between I_{CP} and R_{SET} is:
			$I_{CP MAX} = \frac{25.5}{R_{SET}}$ So, with $R_{SET} = 5.1 \text{ k}\Omega$, $I_{CP MAX} = 5 \text{ mA}$.
2	20	CP	Charge Pump Output. When enabled, this provides ±I _{CP} to the external loop filter, which in turn drives the external VCO.
3	1	CPGND	Charge Pump Ground. This is the ground return path for the charge pump.
4	2, 3	AGND	Analog Ground. This is the ground return path of the prescaler.
5	4	RF _{IN} B	Complementary Input to the RF Prescaler. This point must be decoupled to the ground plane with a small bypass capacitor, typically 100 pF.
6	5	RF _{IN} A	Input to the RF Prescaler. This small signal input is ac-coupled to the external VCO.
7	6, 7	AV_{DD}	Analog Power Supply. This can range from 2.7 V to 3.3 V. Decoupling capacitors to the analog ground plane should be placed as close as possible to this pin. AV_{DD} must be the same value as DV_{DD} .
8	8	REFIN	Reference Input. This is a CMOS input with a nominal threshold of $V_{DD}/2$ and a dc equivalent input resistance of 100 k Ω . This input can be driven from a TTL or CMOS crystal oscillator or it can be ac-coupled.
9	9, 10	DGND	Digital Ground.
10	11	CE	Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-state mode. Taking the pin high powers up the device, depending on the status of the power-down bit, F2.
11	12	CLK	Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.
12	13	DATA	Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is a high impedance CMOS input.
13	14	LE	Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the four latches with the latch being selected using the control bits.
14	15	MUXOUT	The multiplexer output allows either the lock detect, the scaled RF, or the scaled reference frequency to be accessed externally.
15	16, 17	DV_DD	Digital Power Supply. This can range from 2.7 V to 3.3 V. Decoupling capacitors to the digital ground plane should be placed as close as possible to this pin. DV_{DD} must be the same value as AV_{DD} .
16	18	V_{P}	Charge Pump Power Supply. This should be greater than or equal to V_{DD} . In systems where V_{DD} is 3 V, it can be set to 5.5 V and used to drive a VCO with a tuning range of up to 5 V.
		EP	Exposed Pad. The exposed pad must be connected to AGND.

FIGURE 3. Pin Function Descriptions.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/11606	
		REV	PAGE 9	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/11606
COLUMBUS, OHIO	A	16236	
		REV	PAGE 10

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/11606-01XB	24355	ADF4106-SRU-EP-R7
V62/11606-01YB	24355	ADF4106-SCPZ-EP-R7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply

Analog Devices Rt 1 Industrial Park PO Box 9106 Norwood, MA 02062 Point of contact: 7910 Triad Center Drive Greensboro, NC 27409-9605

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/11606
COLUMBUS, OHIO	A	16236	
		REV	PAGE 11